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Abstract
Many pecople use post hoc tests, but do not complclcl)'/ understand why regular t-
tests are not used post hoc. or exactly what these tests are doing. The paper will make a
direct comparison of Tukey and Scheffe post hoc tests with regular t-tests conducted
using a new testwise alpha (0.*) to make clear that controliing experimentwise error via
some kind of Bonferroni-type correction is the basic concept underlying post hoc

methods.
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Understanding What ANOVA Post Hoc Tests Are, Really
Many people use post hoc tests but do not completely understand why
conventional (-tests are not used post hoc. The paper provides a description of the t-test.
a brief explanation and history of ANOVA, and a direct comparisin of both simple (e.g.,
Tukey) and éomplex (e.g., Scheffe) post hoc tests with regular {-tests.

T-tests and “Experimentwise’” Error

Prior to the 1920’s, when a researcher tested the hypothesis that K sample means
were equal, where k>2, the procedure used was the t-test. The formula for t-test with two
independent samples is:

= _Xi- X,

Sxi-x2
where s,= the sample distribution standard deviation of the mean differcnces . When
conducting experiments with numerous sample means, many separate i-tests ( k*(k-1)/2)
must be conducted in order to compare all possible pairs of means.

The number of t-tests that must be computed is the number of pairs of means that
can be contrasted. If no “complex” combinations of means (such as the mean of groups |
and 2 combined versus the mean of group 3) are being conducted, the number of
“simple” pairs of means equals [k (k —1) ]/ 2. For example, if 4 means were being
compared, the number of pairwise t-tests would be:

[4(d~-1)]/2

[4@3)1/2
12/2=6.
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Specifically, the 6 “simple” contrasts that could be tested with t-tests would be:

HOZ M| = Mg
Hy: My = M3
H(,Z M] = M.;
Hy: My = My
HOI Mz = M4
Hor My =My

Although it might appear that using multiple |-tests is appropriate, there are
problems with computing too many t-tests. When more than one t-test is computed, ecach
at a specific level of significance (such as o=.03), the probability of making one or more
“experimentwise” Type [ errors in the series of i-test is greater than . ‘lExpcrimenlwise"
error {Q,.) refers to the probability of making one or more Type I crrors (rejecting a true
null hypothesis) anywhere in the full set of all hypothesis tests, where these tests are each
conducted at a given “testwise” alpha level (e.g., 04y=.05).

The “experimentwisc™ error rate can be readily computed (l.ove, 1988) whencve_r
cither the correlations of the dependent variables or of the hypotheses are all either (a) 1.0
or (b) 0.0. If these correlations are all 1.0, then Ow=04y. It is only when there is a perfect
correlation or only one hypothesis is tested that there will bc; no inflation of EW error
rate, because in actuality still only one hypothesis is being tested when all variables are
perfectly correlated (Thompson, 1994a). If the hypotheses are at all uncorrelated, then
there will be at least some inflation of the experimentwise error probability when several
hypotheses are tested. If the scores or hypotheses are perfectly uncorrelated (e.g., as in
the factorial multiway ANOVA —Thompson, 1994a), then according to the Bonferroni

formula:

o= 1= (1-0uy)",

Ut
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where k is the number of uncorrelated scores or hypotheses. The inflation is at its
maximum when the hypotheses are perfectly uncorrelated.

Researchers recognize that “When multiple statistical tests are carried out in
inferential data analysis, there is a potential problem of ‘probability pyramiding *”
(Huberty & Morris, 1989, p. 306). For example, if 10 uncorrelated tests are conducted at
the o4=.05 level of statistical significance, the “‘experimentwise” Type I error rate
according to the Bonferroni formula is inflated to :

1~ (1-0.05)"" = 0.40126.

One would know that it is more than 40% likely that a Type | error was being made in the
study. As Huberty and Morris (1989 p. 306) indicatcd, “Use of conventional levels of
Type [ error probabilities for each test in a series of statistical tests may yield an
unacceptably high Type I ervor probability across all the tests (the “experimentwise error
rate”).”

Witte (1985) provides an analogy that may further clarify probability pyramiding:

When a fair coin is tossed only once, the probability of heads equals 0.50—just as
when a single t-test ié to be conducted at the 0.05 level of significance, the probability
of a type | eﬁor equals 0.05. When a fair coin is tossed three times, heads can appear
not only on the first toss but also on the second or third toss, and hence the probability
of heads on ar leasr one of the three tosses exceeds 0.05. By this same token, when a
type I error can be committed not only on the first test but also on the second or third
test, and hence the probability of committing a Type I error on at least one of the three
tests exceeds 0.05. In fact the cumulative probability of at least one Type I error can

be as large as 0.15 for this series of three t-tests. (p. 236)
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This coin flip example iliastrates a worst-case inflation of EW error (analogized as the
flip of a head—H), because the results of cuch flip are perfectly uncorretated with
previous results (the coin presumably being unaware of or unaffected by its previous
behavior.)
Thompson (1994a) further explains the EW error rate in studies that use t-tests:
The EW error rate in a study ranges sonmewhere between the nominal TW alpha level
(when only one test is conducted or all hypotheses are perfectly correlated) and [ 1-
(1-testwise alpha)] raised to the power of the number of hypotheses tested (when more

than one test 1s conducted and the hypotheses are perfectly uncorrelated. (pp. 6-7)

Love (1988) presented an example of the formula for estimating maximum inflation of
EW Type 1 error, "As an example involving estimation of EW crror rate, if nine
hypotheses were cach tested at the 0.05 level in a single study, the experimentwisc crror
rate would range somewhere between .05 and .37.” She also prescnted the Proof of the
Bonferroni formula.

Furthermore, although one would know that if there is “experimentwise” Type 1
error inflation in the previous examples, one would not know (a) how many Type I errors
were being made, or (b) which of the statistically significant results were the Type |
errors (Thompson, 1994b).

Fisher’s ANOVA

In light of the potential problems of ‘probability pyramiding’ (Huberty & Morris,
1989) that are present in t-tests, Fisher’s articulation of analysis of variance (ANOVA) in

the 1920’s was extremely important. Following the invention of the ANOVA,
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researchers who wanted to compare means of more than k=2 groups no longer had to
conduct [K (k-1)/2] t-tests for all the pairwise combinations of group means.

In other words. the use of a one-way ANOVA rather than a series of pairwise {-
tests meant that “experimentwise” Type I error rates were no longer inflated by
conducting a series of t-tests. Instead, a single one-way omnibus F-test could be used 1o
test for differences among the set of k means while maintaining the Type I error rate at
the pre-established alpha level for the entire set of comparisons. As Hinkle, Wiersma,
and Jurs (1998'p.351) indicated, “In a one-way ANOVA, the total variance can be
divided into two sources: (1) variation of scores within groups and (2) variation befween
the group means and the grand mean.”

Although Fisher developed the ANOVA in the 1920s, it was not until the 1960’s
when educational rescarch training expanded that the use of the ANOVA became
prominent (Willson, 1980). Edington (1974) tabulated the inferential statistical
procedures used in seven American Psychological Association (APA) journals from 1948
to 1972. Over this 25-ycar period, the use of the ANOVA increased dramatically from
11% of the 1948 articles to 71% of the 1972 articles. The use of t-tests decreased

concomitantly, from 51% in 1948 to 12% in 1972. More recently, Elmore and Woehlke

(1988) reviewed literature published in the American Educational Research Journal

(AER)), Educational Researcher (ER), and the Review of Educational Research (RER)

from 1978 to 1987. Again, the most frequent statistical method to appear in the journal

was the analysis of variance.
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In classical ANOVA, I (a) statistically significant omnibus eifects arc obtained
and (b) the number of k groups is greater than 2, then “post hoce™ tests must be conducted
o deiermine which groups differ. For example, with three groups, it might be that two
means are equal but the third is higher, or maybe two means are equal bat the third is
lower, or it could be that all three means are different. By using a post hoc procedure, the
researcher attempts to probe the data to {ind out which of the possible non-null scenerios
is most likely to be true. Various terms are used in a synonymous fashion to mean the
same thing as the term ‘post hoc test.” The three synonyms that show up most often in
the published data are “a postericri test”, “follow-up test”, and “unplanned comparison
test” (Huck, 2000).

Post hoc multiple comparison tests, unlike the t-test, were developed to maintain
the a priori Type 1 error ratc when computing a scrics of comparisons following the
rejection of the null hypothesis in the ANOVA. A post hoc test can be defined as « -test
with a built in Bonferroni-type correction that takes into account all sample means within
a study. In a post hoc test, the researcher’s goal is to better understand why the ANOVA
H, was rejected. Because the H, indicated that equality exists among all population
means, we can say that a set of post hoc comparisons is designed to help the researcher
gain insight into the pattern of means. Huck (2000) discussed how research hypotheses .
drive the use of post hoc investigations:

It should not be surprising that differences in research hypotheses lead researchers to
do different things in their post hoc investigations. Sometimes for example,

researchers set up their post hoc investigations to compare each sample mean against
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every other sample mean. On other occasions they use their post hoc test to compare
the means associated with cach of several experimental groups against a control
sroup’s mean, with no comparisons made among the experimental groups. On rarc
occasions, a post hoc investigation is implemented to compare the mean of one of the
comparison groups againzt the average of the means of two or more of the remaining
groups. (pp. 356-357)

“Simple’” Post Hoc Tests: Tukey Method

So-called “simple” post hoc tests evaluate whether the means of two groups are
the same (e.g., My = M), There are several formulas for doing simple post hoc tests.
For the purpose of this paper, the Tukey post hoc test will be discussed. The Tukey test is
one of the more conscrvative simple post hoc tests that exerts considerable control over
Type 1 errors (Huck, 2000). The Tukey method, often called the HSD (honestly
significant differcnce) test, is designed to make all pairwise or simple comparisons while
maintaining the experimentwise error rate (¢.,) at the pre-established « tevel (Hinkle. et
al.. 1998). The null hypothesis tested for cach pairwise comparison is

h,: X=X, forazb

That is, each pair of population means is equal. The test statistic is Q defined as follows:

Q= Xa:_y(b
YMS./n

The Tukey post hoc test uses the studentized range (Q) distributions to maintain

the experimentwise alpha at the a priori alpha level (Hinkle et al., 1998). The Q

10
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distributions were developed to determine the minimum difference between the largest
and the smallest means in a set of K sample means that is necessary to reject the

hypothesis that the corresponding population means is equal.

Post Hoc Test for “*Complex” Comparisons: Scheffe Method

When a researcher is interested in testing hypotheses that are more complex than
simple differences between pairs of means, a complex comparison is made. For example,
one might want (o know whether two experimental groups (considered together) differ
from a control group. The Scheffe method is the most versatile and most conservative
procedure that can be used to test these complex hypotheses. With the Sc*. ffe method,
the form of the nall hypothesis is as follows:

Hy: XC =0
where  ZC, =0,

That is, we add (or subtract) the products of the means multiplied by these coefficients.
The only restriction is that, for each hypothesis, the sum of the cocfficients must equal
zero (Hinkle et al., 1998). For any contrast, the cocfficients (Cy) are nonzero only for the
population means under consideration in the hypothesis. For any population mean not
included in the hypothesis, Ci =0.

Suppose a rescarcher had four samples of people in a study and was interested in
determining whether people in group two diffcred on a chosen variable from the three

other samples. This hypothesis can be wrilten as

Ho: fo= W+l +1
3
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This hypothesis can be expressed in the terms of a contrast:

He (13 + D+ D), +(3), =0
Notice that the sum of the coefficients equals ta zero, When there are unequal group
sizes, it is necessary (o adjust the coefficients. Details of the required procedure are
available (Hinkle et al.,1998). The test statistic for the Schefle method is:

F=(ZC XY
(MS,) [Z|C'/n,)]

The critical value is determined by multiplying the critical value of IF used in the
ANOVA by the {actor K-1, where K is the number of groups (Hinkle et al., 1998). This
multiplication results in an increase in the critical value and is the primary reason why
the Scheffe Methad is a conservative method.

Comparisons of t-tests with Post Hoe "Fest

Post hoc tests are conceptually related to canducting regular (-tests, but where the
t-t2sts are conducted with an “adjusted” testwise alpha (¢ ). Lssentially the post hoe
tests are regular {-tests, except that they ouild in a correction for experimentwise ervor, by
lowering the oy to cqual o *, where this new testwise « is computed with some
approximation of:

O™ = Oy /],
where | is the number of post hoc tests being conducted. By dividing the old o, by the
number of post hoc tests conducted, every sample is taken into account (Huck, 2000).

Likewise, in the Tukey and Scheffe formulas, the MS, in the denominator takes
into account every observation in every sample. MS_ is a variance estimate. The within
groups variance estimates are found by dividing the sum of squarcs within (SS_) by the

degrees of freedom associated with each of these estimates (Jurs, 1998). Sum of squares

0
“
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‘ within ts the sum of :Qqunrcs within each group, pooled across groups and then divided by
the sum of degrees of freedom for each group.

Instead of dealing with the problem of an inflated Type | crror risk by adjusting
the level of significance as is done with the Bonferroni technique, the Tukey and Scheffe
procedures make an adjustment in the size of the critical value used to determine whether
an observed difference between two means is statistically significant. To compensate for
the fact that more than one comparison is made, larger critical values are obtained.
However, the degree to which the critical value is adjusted upward varies according to
which test is used. TF . two post hoc tests discussed (e.g., Tukey, Scheffe) are
conservative tests and the critical value is increased greatly in order to have more control

over Type I errors (Huck, 2060).

—
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